应力分析-c2211132310-c2212161423
APP下载 公众号
返回列表
邀请码:[[treenode.join_code]]

分享或加入:点击“加入思维导图”并输入对应的邀请码

编辑文字:双击

新建子级:制表符tab

新建平级:enter回车

删除:Ctrl/Command + 回退

快捷键
文本展示 高效垂直 结构可变(只读) 拖拽显示(只读)
描述:[[treenode.tree_desc]]
[[ node.label.slice(0,48) ]]...
[[ node.label ]]

返回顶部

反馈

隐藏

确认删除该内容 取 消 确 定 需求反馈 不良举报 故障反馈 改进建议 称赞表扬 私有的 公开的 公开并发布(推荐)
描述:

[[treenode.tree_desc]]

应力分析-c2211132310-c2212161423

等效应力

八面体切应力绝对值的3/根号2倍参数

平均应力与应力偏张量

应力偏张量:引起形状改变,不产生体积形变

平均应力:应力张量中正应力的平均值

主切应力,主切平面

最大切应力求解

主切应力,最大切应力及主切平面的含义

最大切应力:主切应力中的最大值

主切应力:主切平面上的切应力

主切平面:切应力取极值的平面

主切平面上的正应力不一定为零

主应力,主平面

主应力求解

旋转坐标轴,令斜面上的切应力为零,此时斜面上的全应力就是主应力

由三个应力不变量求解

主应力及主平面的含义

主应力:主平面上的正应力

主应力的方向即为主方向,又称应力主轴

主平面:切应力为零的微分面

斜面上的应力

斜面上的全应力在斜面法线上的投影

斜面上的全应力及其沿坐标轴的分解

斜面的位置

一点的应力

应力张量

将应力分量写成矩阵的形式

应力分量

将一点的应力状态简化为三个面上的应力分量来表示,共3个正应力,6个切应力

应力状态

一点上所有的应力情况,以正六面体为例